Strategic Combination of DNA-Damaging Agent and PARP Inhibitor Results in Enhanced Cytotoxicity
نویسندگان
چکیده
PARP inhibitors (PARPi) are under clinical trial for combination cancer chemotherapy. In the presence of a PARPi, PARP-1 binds DNA strand breaks but cannot produce poly(ADP-ribose) polymers or undergo auto-poly(ADP-ribosyl)ation. DNA binding is persistent, hindering DNA repair. Methylated bases formed as a result of cellular exposure to DNA-methylating agents are repaired by DNA polymerase β (pol β)-dependent base excision repair (BER) producing a 5'-deoxyribose phosphate (5'-dRP) repair intermediate. PARP-1 binds and is activated by the 5'-dRP, and PARPi-mediated sensitization to methylating agents is considerable, especially in pol β-deficient cells. Cells deficient in the BER factor XRCC1 are less sensitized by PARPi than are wild-type cells. PARPi sensitization is reduced in cells expressing forms of XRCC1 deficient in interaction with either pol β or PARP-1. In contrast, agents producing oxidative DNA damage and 3'- rather than 5'-repair intermediates are modestly PARPi sensitized. We summarize PARPi experiments in mouse fibroblasts and confirm the importance of the 5'-dRP repair intermediate and functional pol β and XRCC1 proteins. Understanding the chemistry of repair is key to enhancing the clinical success of PARPi.
منابع مشابه
Predicting enhanced cell killing through PARP inhibition.
PARP inhibitors show promise as combination and single agents in cancer chemotherapy. Here, we evaluate results obtained with mouse fibroblasts and the common laboratory PARP inhibitor 4-amino-1,8-naphthalimide (4-AN) and analyze the potential for enhanced cytotoxicity following the combination of a DNA-damaging agent and a PARP inhibitor. Methylated DNA bases are repaired by the monofunctional...
متن کاملEditorial: Inhibiting PARP as a Strategic Target in Cancer
When Christina Annunziata and I embarked on guest editing an e-journal about poly(ADP-ribose) polymerase (PARP) inhibitors for cancer therapy, our goal was to capture how one of the most promising, rationally developed therapies had become increasingly complex in clinical use. We recruited an outstanding group of researchers to help in this effort. We organize their contributions into two broad...
متن کاملSuicidal cross-linking of PARP-1 to AP site intermediates in cells undergoing base excision repair
Poly(ADP-ribose) polymerase-1 (PARP-1) is an abundant nuclear enzyme in mammalian cells. The enzyme synthesizes polymers of ADP-ribose from the coenzyme NAD(+) and plays multifaceted roles in cellular responses to genotoxic stress, including DNA repair. It had been shown that mouse fibroblasts treated with a DNA methylating agent in combination with a PARP inhibitor exhibit higher cytotoxicity ...
متن کاملSensitizing Ewing sarcoma to chemo- and radiotherapy by inhibition of the DNA-repair enzymes DNA protein kinase (DNA-PK) and poly-ADP-ribose polymerase (PARP) 1/2
Background DNA-PK and PARP inhibitors sensitize cancer cells to chemo- and radiotherapy. ETS transcription factors (EWS-FLI1) have been described as biomarkers for PARP-inhibitor sensitivity. Sensitivity to single agent PARP inhibitors has so far been limited to homologous recombination repair (HRR) deficient tumors, exploiting synthetic lethality. Results In clonogenic assays, single agent r...
متن کاملPotentiation of temozolomide cytotoxicity by poly(ADP)ribose polymerase inhibitor ABT-888 requires a conversion of single-stranded DNA damages to double-stranded DNA breaks.
Poly(ADP-ribose) polymerase (PARP) senses DNA breaks and facilitates DNA repair via the polyADP-ribosylation of various DNA binding and repair proteins. We explored the mechanism of potentiation of temozolomide cytotoxicity by the PARP inhibitor ABT-888. We showed that cells treated with temozolomide need to be exposed to ABT-888 for at least 17 to 24 hours to achieve maximal cytotoxicity. The ...
متن کامل